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ABSTRACT

Motivation: Advances in DNA microarray technology and computa-

tional methods have unlocked new opportunities to identify ‘DNA fin-

gerprints’, i.e. oligonucleotide sequences that uniquely identify a

specific genome. We present an integrated approach for the computa-

tional identification of DNA fingerprints for design of microarray-based

pathogen diagnostic assays. We provide a quantifiable definition of a

DNA fingerprint stated both from a computational as well as an

experimental point of view, and the analytical proof that all in silico

fingerprintssatisfyingthestateddefinitionare foundusingourapproach.

Results: The presented computational approach is implemented in

an integrated high-performance computing (HPC) software tool for

oligonucleotide fingerprint identification termed TOFI. We employed

TOFI to identify in silico DNA fingerprints for several bacteria and plas-

mid sequences, which were then experimentally evaluated as potential

probes for microarray-based diagnostic assays. Results and analysis

of approximately 150 in silico DNA fingerprints for Yersinia pestis

and 250 fingerprints for Francisella tularensis are presented.

Availability: The implemented algorithm is available upon request.

Contact: jaques.reifman@us.army.mil.

INTRODUCTION

The recent advances in genomic sequencing and the availability of

large-scale sequence databases have unlocked several opportunities

to identify ‘genomic signatures’ or ‘DNA fingerprints’, i.e. short

DNA sequences that uniquely ascertain the presence or absence of

causative biological agents, such as viruses, bacteria or virulent

genes. For example, a vast number of DNA-based detection and

diagnostic technologies are being developed to quickly identify

biological threat agents (Ivnitski et al., 2003; Slezak et al., 2003;

Draghici et al., 2005; Kaderali and Schliep, 2002), such as the

anthrax-causing bacterium, Bacillus anthracis, and the plague-

causing bacterium, Yersinia pestis. DNA signatures could also be

used to detect the presence of one or more virulent genes, such as

Bacillus genes, which encode important virulence factors,

entereotoxins and exotoxins (Sergeev et al., 2006), and to provide

high-resolution differentiation between closely related microorgan-

isms in microbial forensics (Willse et al., 2004). New viruses and

strains have been identified using a special microarray technology

consisting of approximately 11 000 70mer oligonucleotides (Wang

et al., 2002). DNA fingerprints have also been used to develop

diagnostic assays for a wide-range of important applications in

medicine, environmental monitoring and quality control of food

products (Hardiman, 2003; Joos and Fortina, 2005; Wang et al.,
2002; Abbe et al., 2004).

The specific algorithm implemented in a DNA fingerprint identi-

fication method is selected based on (1) whether the DNA finger-

prints are being sought for a specific pathogen strain (e.g. Y.pestis
CO92), a group of pathogens from the same species (e.g. all Y.pestis
strains) or genus (e.g. all Yersinia species), or a set of organisms that

may or may not have any phylogenetic relationship (e.g. to detect

a viral or a bacterial family) and (2) the experimental conditions

specified by the end application technology, such as PCR (Slezak

et al., 2003; Viljoen et al., 2005; Haas et al., 2003; Gordon and

Sensen, 2004) or DNA microarrays (Kaderali and Schliep, 2002;

Hardiman,2003;Rahmann,2003;Leberetal.,2005;Nordberg,2005).

The use of real-time PCR-based detection technology requires the

identification of three informative sequences: two amplification

primer sequences and an additional probe sequence (the finger-

print). The assay requires that primer hybridization takes place

near the fingerprint and, therefore, imposes constraints on the posi-

tion of the primer and PCR-based fingerprints. Moreover, PCR-

based assays are quite limited in their multiplexing capabilities,

as different assays are required to detect different pathogenic

sequences. In contrast, microarrays do not impose any position

specific constraints on the DNA fingerprints, and several finger-

prints can be simultaneously placed on a microarray to provide

detection redundancy and allow for the diagnosis of multiple patho-

gens on a single assay. Despite these advantages, microarray-based

assays are relatively insensitive and slow compared to the exquisite

sensitivity and speed of PCR-based assays. Microarray sensitivity

can be greatly enhanced by incorporating sample amplification prior

to hybridization but, unfortunately, this results in a net increase in

assay time for already slow assays.

This paper is concerned with the identification of DNA finger-

prints for specific, single pathogenic sequences, referred to as the�To whom correspondence should be addressed.
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target, for the design of DNA microarray-based diagnostic assays.

The target could be an entire genome (e.g. B.anthracis Ames), a

chromosome (e.g. Brucella melitensis biovar abortus 2308 chromo-

some II) or a non-chromosome sequence (e.g. B.anthracis plasmid

pXO2). A more general problem, not addressed here, involves the

identification of DNA fingerprints common to multiple strains or

multiple species. An effective approach for this problem is to use

multiple genome alignment and search for conserved regions to

identify common DNA signatures (Slezak et al., 2003). Identifica-

tion of common DNA signatures becomes an even greater problem

for highly variable RNA viruses (Gardner et al., 2004), where a

promising solution is to select combinations of non-unique probes

and use unique hybridization patterns to unambiguously identify

specific viral strains (Urisman et al., 2005; Schliep et al., 2003).

Given the long length of most targets, the identification of DNA

fingerprints is a problem of high computational complexity. The

potential solution space is extremely large because every subse-

quence of the target sequence needs to be considered. Furthermore,

the determination of uniqueness requires comparison with nucleot-

ide databases, such as the GenBank (Benson et al., 2005), that are

growing exponentially in size. Moreover, uniqueness of DNA fin-

gerprints obtained using such comparative algorithms is only valid

with respect to the reference database used. As new sequences

are made available, previously identified fingerprints need to be

revalidated.

Several practical challenges arise in the experimental evaluation

of the computationally identified DNA fingerprints for microarray-

based assays. The DNA fingerprints should produce a high response

when hybridized with a sample containing the target genome. Con-

versely, the response for any non-target genome should be as low

as possible. Thus, algorithms for DNA fingerprint identification

must include experimental constraints and DNA–DNA hybridiza-

tion modeling methods to predict the response on a microarray.

Although research in modeling molecular level interactions

between DNA sequences has made significant progress, there is,

unfortunately, no analytical method available today that can predict

the exact outcome of a hybridization reaction between two or more

arbitrary DNA sequences (SantaLucia and Hicks, 2004; Nordberg,

2005). Moreover, due to the variability in the outcome of a hybrid-

ization experiment, a large number of repetitions are required to

experimentally evaluate the DNA fingerprints. It might not be pos-

sible to experimentally test all the computationally identified fin-

gerprints because of the associated costs and limited resources.

To simultaneously accommodate these computational needs and

experimental constraints, DNA fingerprint identification tools

(Kaderali and Schliep, 2002; Rahmann, 2003; Leber et al., 2005)

integrate computational algorithms for identifying unique

sequences and DNA hybridization modeling tools for predicting

the outcome of the microarray experiment. Often, these tools

apply various approximations to reduce the computational complex-

ity. For example, the integrated approach of Kaderali and Schliep

(2002) uses an efficient search algorithm based on suffix trees and

a simplified two-state transition near-neighbor thermodynamic

model for DNA probe design and cross-hybridization. The simpli-

fied model reduces the computational time but introduces modeling

errors in the DNA fingerprint design. A similar thermodynamic

model with a computationally more efficient approach was pro-

posed by Rahmann (2003). An efficient fractional programming

approach for melting-temperature computation with an improved

two-state transition near-neighbor thermodynamic model has also

been proposed (Leber et al., 2005), however, computational time

would still be an issue for cross-hybridization evaluation of a large

number of non-target genomes.

Computational and experimental factors make quantification of

the uniqueness or specificity of a short DNA sequence challenging.

In fact, a literature survey indicates that the related studies have

not stated a precise, quantitative definition of a DNA fingerprint.

Although the general idea is to search the target genome for

‘unique’ DNA sequences and then test them experimentally, the

in silico criterion for uniqueness has not been explicitly stated. In

this paper, we first provide a formal definition of a DNA fingerprint

based on various experimental conditions and a specificity criterion.

We then describe an integrated approach that combines efficient

bioinformatics algorithms, takes into account experimental con-

straints, and includes a large-scale comparison of DNA fingerprints

with nucleotide databases. Next, we describe the algorithm under-

lying TOFI (tool for oligonucleotide fingerprint identification), its

software implementation on a high-performance computing (HPC)

platform, and an analytical approach to choose the input parameters

of TOFI, which guarantees that all possible DNA fingerprints sat-

isfying the stated definition are obtained. Finally, we discuss initial

experimental results, which help evaluate our definition of a DNA

fingerprint and the associated specificity criterion.

TERMINOLOGY AND PROBLEM DEFINITION

A DNA fingerprint for a given target genome gt is defined with

respect to a reference nucleotide sequence database denoted by

G ¼ {g1, g2, . . . , gn, . . . , gN} that contains N sequences. In practice,

G consists of DNA sequences from one or more publicly available

comprehensive databases, such as GenBank, or any other smaller

nucleotide database, such as a viral DNA sequence database. The

target genome may or may not belong to G, implying that it could

be a known pathogen or a newly sequenced one. Implicit in the

definition of a DNA fingerprint is its validity with respect to the

available database. As newer DNA sequences become available and

are added to G, it is necessary to verify the validity of the previously

identified fingerprints.

Based on the school of thought, computational or biological, the

definition of a DNA fingerprint varies. Therefore, some discussion

about our notion of a DNA fingerprint is in order.

From a pure computer science standpoint, a DNA fingerprint of

gt could be defined as ‘any subsequence of gt that is not a subse-

quence of any gn 2 G, n 6¼ t’. By this definition, the problem of

identifying DNA fingerprints is equivalent to the classic string

comparison problem of identifying substrings of gt that do not

exactly match any substring of any gn 2 G, n 6¼ t. Although mathe-

matically correct, this definition lacks the application-specific

requirements. DNA fingerprints have to satisfy: (1) design con-

straints, so that they can be used as DNA probes on microarrays

and (2) specificity constraints, so that they can discriminate, in a

microarray hybridization reaction, between target and non-target

sequences. DNA fingerprints that simultaneously satisfy both

design and specificity constraints require a biologically more

sound definition. We mathematically formalize the experimental

and specificity constraints as follows.

Let K denote the DNA microarray experimental constraints, such

as the minimum and maximum length of the DNA fingerprint, the

W.Tembe et al.
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hybridization melting-temperature, GC content, etc. (SantaLucia

and Hicks, 2004), and let P ¼ {p1, p2, . . . , pi, . . . , pI} denote the

set of all subsequences of gt that satisfy K. Thus, by definition, every

pi 2 P will have length within the specified minimum (Lmin) and

maximum (Lmax) bounds, GC content within the required range,

and will satisfy several other properties specified by the chosen

DNA hybridization modeling methodology. We refer to the

sequences in P as DNA probes. Note that constraints denoted by

K do not specify attributes regarding the uniqueness of a DNA probe

with respect to non-target sequences.

Quantifying specificity of DNA fingerprints from an experimental

point of view is very subjective. It is based on interpreting

the experimental hybridization results between DNA probes and

non-target DNA sequences. Since there is a lack of accurate

in silico hybridization models, we infer the specificity of a DNA

probe by first computing DNA sequence alignments, and then

determining if the aligned probe meets an empirical threshold T.

This is based on the hypothesis that DNA sequences that align

poorly are unlikely to form a stable DNA–DNA duplex for a

given set of experimental constraints. This hypothesis implies

that the DNA sequence alignment, calculated strictly using com-

putational tools, provides quantification, through the threshold T, of

the actual strength of the DNA–DNA duplex. Thus, we compute the

specificity of a DNA probe from the number of mismatches, gaps

and insertions/deletions in the alignment and compare it with the

threshold T, representing the set U of all specificity constraints.

Having formalized the experimental and specificity constraints,

we define a DNA fingerprint and the problem of identifying all DNA

fingerprints for a target genome as follows:

Definition (DNA fingerprint): A DNA probe pi of length Li is

considered a DNA fingerprint of gt if and only if an optimal

sequence alignment between pi and any other sequence gn 2 G,
n 6¼ t, has at most Li-T matches.

Definition (DNA fingerprint identification): For a target DNA

sequence gt, find all in silico DNA fingerprints that satisfy the

experimental constraints K and specificity constraints U with

respect to a reference DNA sequence database G.

Let S ¼ {s1, s2, . . . , sf, . . . , sF} be a subset of P, i.e. S � P, that

denotes the set of DNA probes that satisfy both constraints K and U.

Our goal is to find all F elements of S. We refer to the elements of S
as in silico DNA fingerprints because they satisfy all constraints that

have been quantified for computational purposes. Their experi-

mental validity needs to be tested in an actual DNA microarray

experiment. Unless stated otherwise, henceforth the term ‘DNA

fingerprint’ implies in silico DNA fingerprint, which is valid

with respect to a reference database used.

INTEGRATED APPROACH

TOFI implements a multi-step approach that breaks down the prob-

lem of fingerprint identification into the three steps illustrated in

Figure 1. The first step reduces the solution space by discarding

DNA sequences common to both the target sequence and one or

more biological near-neighbor sequences. The surviving sequences

are termed candidate sequences. In the second step, a microarray

DNA probe design phase extracts from candidate sequences only

those subsequences that satisfy the application-specific experi-

mental constraints K. In the third step, each DNA probe is aligned

with all DNA sequences present in the chosen reference nucleotide

database. A user-defined specificity constraint U is used to

interpret the alignments from the standpoint of cross-hybridization

between the DNA probes and non-target genomes. DNA probes

satisfying U are reported as DNA fingerprints and are tested on

microarrays.

Although the problem has been split into three discrete steps for

clarity of explanation, the individual steps are not completely inde-

pendent from an algorithmic standpoint. In fact, our objective, to

obtain all DNA fingerprints, leads us to conclude that the input

parameters in the first step have an analytical relationship with

the constraints imposed in the second and the third steps. We discuss

the interdependence of the three steps after an in-depth description

of each of the three steps.

Step 1: solution space reduction

The solution space to be searched is extremely large because

every subsequence of the given target must be considered. Testing

each subsequence experimentally is impractical and expensive.

But reducing the solution space computationally can be quick

and cheaper. For this purpose, we exploit the sequence similarities

between the target genome and an evolutionary near-neighbor (gr)
that can be identified from a phylogenetic tree or published data.

The target and neighbor will contain common DNA sequences,

which, obviously, cannot be used as DNA fingerprints. DNA

sequences common to both gt and gr are extracted using suffix

trees (Wiener, 1973; Gusfield, 1997), which, within the domain

of comparative genomics, have been used in Vmatch (Kurtz,

2002) and the Maximal Unique Matcher (MUMmer) (Kurtz

et al., 2004) to identify repeats, exact or approximate matches,

and single nucleotide polymorphisms. Details of the construction,

traversal and numerous applications of suffix trees in several dif-

ferent string-matching applications are available in (Gusfield,

1997). It should be noted that the solution space could be further

reduced by comparing the target genome with multiple non-target

genomes, as described by Slezak and colleagues (Slezak et al.,
2003). This could be done within TOFI’s current algorithmic con-

figuration by concatenating strings from multiple non-target gen-

omes into one long string and providing it as the near-neighbor

genome for comparison. An alternate, perhaps more efficient

Fig. 1. The Three Steps of the TOFI Algorithm.
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approach, which would require software modification, is to compare

the target sequentially against a list of non-target sequences, so that

after each comparison only unmatched sequences are compared

with the subsequent non-target genomes from the list.

Once the exact matches between the target gt and its near-

neighbor gr are identified, the target can be represented as a con-

catenation gt ¼ C0M1C1M2C2 . . . MJCJ, as shown in Figure 2. Mj

denotes the jth exact match of length jMj j and Cj denotes the jth
candidate sequence, i.e. a sequence in the target that contains

no matches of length M or longer with the near-neighbor. C0

and/or CJ can be null based on whether or not there is an exact

match at the beginning or the end of gt, respectively. Exact matches

that are longer than the minimum length M are discarded and only

the candidate sequences are retained for further consideration.

The candidate sequences have no restriction with respect to their

length, position in the genome, or composition of base pairs.

Of particular interest to our application is the choice of input

parameters to the suffix-tree-based algorithm, in particular, the

minimum length M of exact matches between gt and gr that

would lead to identification of all DNA fingerprints. Our analysis

indicates that the parameter M is closely related to the experimental

and specificity constraints, detailed in Steps 2 and 3, respectively.

Therefore, we first describe the remaining two steps of TOFI before

an analytical relation is derived between the parameter M and the

constraints imposed by the problem definition.

This selection of M differs from a related study (Slezak et al.,
2003), where M¼ 18 was heuristically selected to meet the minimal

PCR primer size.

Step 2: microarray probe design

The second step imposes a set of experimental constraints K to

extract DNA microarray probes from the candidate sequences. A

recent review (Panjkovich and Melo, 2005) indicates that for the

same input DNA sequences different in silico probe design mod-

eling tools, not surprisingly, produce different sets of DNA probes.

To our knowledge, there is no universally accepted modeling meth-

odology available today to design microarray probes from DNA

sequences. Often, these tools are used in an iterative, trial-and-error

fashion to optimize the quality/number of output DNA probes to

suite the application-specific needs.

We have selected a probe design tool that implements a multi-

state thermodynamic model for melting-temperature (SantaLucia

and Hicks, 2004). The model allows for the representation of several

dozen constraints on the DNA probes, such as probe length, GC

content, molar concentrations, self-hybridization possibilities and

limit on the number of single nucleotide repeats. Additional

information on the constraints K can be found in SantaLucia and

Hicks (2004). As an example, only a few important constraints are

shown in Table 1. The DNA probes satisfying these constraints are

extracted from every candidate sequence and are passed on to the

next step.

Step 3: specificity determination by sequence

alignment

In the third step, every DNA probe is aligned with sequences in

the reference nucleotide database. The results of the alignments are

interpreted to predict cross-hybridization using the following

general rule: A DNA probe that aligns poorly with all non-targets

DNA sequences is unlikely to cross-hybridize with non-targets and,

therefore, should be considered as a fingerprint.

Due to the limitations of DNA–DNA hybridization models, deter-

mining the alignment corresponding to the optimal DNA–DNA

duplex on a microarray is hard. Computationally, optimal alignment

between two DNA sequences could be defined using the generalized

edit distance algorithm (Gusfield, 1997). Simply put, the edit dis-

tance between two sequences corresponds to the total number of

insertions, deletions and substitutions that are needed to transform

one sequence into the other. From the standpoint of DNA cross-

hybridization, a substitution corresponds to a mismatched pair of

nucleotides and insertions/deletions correspond to gaps in the

DNA–DNA duplex. The lower the number of mismatches and

gaps in the alignment is the lower in the edit distance. However,

edit distance does not provide sufficient information with regards to

the strength of hybridization. For example, it does not consider the

position of matches in the alignment, GC content, gap length and

the longest common factor in the alignment (Rahmann, 2003).

Moreover, computing the optimal alignment between each DNA

probe and every DNA sequence in a large database, such as the ‘nt’

nucleotide database from the National Center for Biotechnology

Information (NCBI, http://www.ncbi.nlm.nih.gov/) (Pruitt et al.,
2005), would be very computationally intensive.

Based on these issues and practical time constraints, we opted to

use the BLASTN program from BLAST (Altschul et al., 1990) for

aligning DNA probes with a reference database. The alignment

algorithm in BLAST is a heuristics-based approach that starts off

by identifying a word of exact match of a given length (w parameter)

and proceeds by extending it using dynamic programming to allow

mismatches and gaps in the alignment. A statistical significance

score termed E-value is used to distinguish between potentially

meaningful alignments and chance alignments. The E-value

score was used in (Draghici et al., 2005) to quantify the specificity

of DNA probes. However, E-values are determined by the length

of the alignment, size of the query, size of the total database and

several other parameters that are not related to the ability of a probe

to form a cross-hybrid with a non-target genome.

Instead of using E-value alone to determine probe specificity,

TOFI examines the actual alignments reported by BLAST and

determines the specificity of a probe by taking into account the

number of matches, mismatches and gaps in the alignment inde-

pendent of its statistical significance. These specificity constraints U
form the basis for the empirical threshold T, used in the following

Fig. 2. Output of the Suffix-Tree-Based Algorithm.

Table 1. Typical values for DNA probe design constraints K

Length (bases) Melting-temperature (�C) GC content (%)

Minimum, Lmin: 35 Minimum, Tmin: 70 45–50

Maximum, Lmax: 40 Maximum, Tmax: 75

W.Tembe et al.
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hypothesis to infer hybridization patterns from ‘optimal’ BLAST

alignments: If the best BLAST alignment between a DNA probe and

a non-target genome has more than T mismatches or gaps, then the

DNA probe will be considered as an in silico DNA fingerprint.

It is well documented that using BLAST for assessment of cross-

hybridization of a probe with non-target genomes will result in

some non-specific probes (Rahmann, 2003; Nordberg, 2005). If a

word of length w is not found in a database sequence, the probe

alignment with the sequence will be skipped resulting in potential

missed cross-hybridization. In other situations, partial alignments

with probes may result in underestimated cross-hybridization. Two

promising approaches could be considered to improve probe spe-

cificity. First, additional filtering of the probes selected as finger-

prints by BLAST could be performed to augment the hypothesis

relating alignment to hybridization. In this case, additional informa-

tion would be extracted from analyses of the alignments reported by

BLAST, such as the maximum number of contiguous matches or

the position of matches in the probe alignment, and used as rules

to improve specificity constraints. Second, better alignment algo-

rithms could be implemented as a post-processing step, which

would incorporate hybridization thermodynamics into the align-

ment evaluation to take into account hybridization stability

(Leber et al., 2005). However, it must be emphasized that the

lack of an accurate model to directly relate a DNA sequence align-

ment with its corresponding DNA–DNA hybridization leaves the

choice of probe specificity characterization as an open question.

TOFI parameter selection

The three steps in TOFI implement different bioinformatics algo-

rithms, each carrying out a different task using its own set of input

parameters. However, the minimum length of the exact matches M
in the first step is analytically related to the length constraints Lmin

and Lmax on the DNA probes in the second step and the specificity

threshold T used in the third step. In this section, we mathematically

derive this analytical relationship.

The problem of selecting an appropriate M value could be stated

as follows: given the length constraints Lmin and Lmax on the length

of the probes and the specificity threshold T, find a relationship

between Lmin, Lmax, T and M, which guarantees that no valid

DNA fingerprints are discarded.

Our approach is initiated by extending each candidate sequence

Cj, j ¼ 0, 1, . . . , J, by E bases into each side of the neighboring

exact match. This prevents the possible discarding of signatures

that include the boundaries of Cj. From the extended candidate

sequences we construct a candidate DNA probe set Pcand, which

contains every sequence satisfying the length constraints Lmin and

Lmax. Only those DNA probes in Pcand that satisfy the experimental

constraints will be included in the probe set P for alignment with

the reference dataset, i.e. P � Pcand.

We choose E such that M > E. This condition guarantees that the

overlaps between two adjacent extended candidates, if any, will be

limited to the exact match region separating the two candidates. It

also sets a lower limit on M, M¼ E + 1. To ensure that any candidate

DNA probe of length Li having less than or equal to Li � T exact

matches is not discarded, the extension length should be E¼ Li� T.

Thus, the extension length E is constrained by Lmin � T � E �
Lmax � T. Substituting for M ¼ E + 1 and making a conservative

selection, we obtain M ¼ Lmax � T + 1. Such selection will, most

likely, generate a candidate probe set Pcand that contains some false

positives, i.e. probes that do not satisfy the specificity constraints.

The majority of such non-specific probes will be discarded after

the BLAST alignment inspection. However, some false positives

will remain due to possible missed matches in BLAST, as described

in the previous section. The details of the candidate probe selection

algorithm are given in Table 2.

Finally, we prove that if the candidate sequences are obtained

using E ¼ Lmax � T, with M ¼ E + 1, then all DNA fingerprints is

included in the set Pcand. However, as S denotes the set of DNA

fingerprints for gt, it will suffice to prove that such selection for

M guarantees that S � Pcand.

Table 2. Algorithm for candidate sequence selection using the suffix tree output

Variables: Procedure:

gt ¼ Target genome

gr ¼ Near-neighbor genome of gt
Lmin ¼ Minimum probe length

Lmax ¼ Maximum probe length

T ¼ The specificity constraint, i.e. the combined minimum

number of mismatches, insertions and deletions in the optimal

alignment between a probe and any non-target sequence, defining a fingerprint

M ¼ Input parameter of the suffix-tree-based algorithm that specifies

the minimum length of exact matches between gt and gr
Mj ¼ jth exact match between gt and gr, where j ¼ 1, . . . , J

Cj ¼ jth candidate sequence, j ¼ 0, 1, . . . , J, defined as a subsequence

of gt that is:

bounded on both sides by exact matches of length at least M, or

located between the start of gt and the first exact match of length at least

M, or located between the last exact match of length at least

M and the end of the genome gt
E ¼ Length of the extension of candidate sequences into the adjacent

exact match(es)

Input: Lmax, Lmin, T, gt and gr
(1) Pcand ¼ empty set

(2) Let E ¼ Lmax � T

(3) Let M ¼ E + 1 ¼ Lmax � T + 1

(4) Using suffix tree, identify exact matches M1, . . . ,MJ of length

at least M between gt and gr, and candidates C0, C1, . . . ,CJ from gt
(5) For each candidate sequence Cj from the suffix tree output,

(A) If Cj is a prefix of gt, then extend Cj by E bases to

the right. Go to step D

(B) If Cj is a suffix of gt, then extend Cj by E bases to

the left. Go to step D

(C) Extend Cj on the left and the right by E bases

(D) Add all subsequences of Cj satisfying the length

constraints to Pcand

Result: Every candidate DNA probe of gt satisfying constraints

Lmax, Lmin, and T will be in Pcand

Oligonucleotide fingerprint identification
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Assertion 1. By construction, every subsequence of gt containing

an exact match of length smaller than M is included in an extended

candidate sequence (steps 5.A–5.C in Table 2).

Assertion 2. From each extended candidate sequence, every sub-

sequence satisfying the length constraints Lmin and Lmax is included

in Pcand (step 5.D in Table 2).

Assertion 3. From assertions 1 and 2, none of the sequences in

Pcand can contain an exact match of length M or greater.

Assertion 4. By definition, a DNA fingerprint si 2 S contains at

mostLi�T exact matches when aligned with any non-target genome.

Thus, the length of the longest exact match between si and any other

non-target genome is Li � T. Since, Li � T � Lmax � T ¼ E < M,

from assertions 1, 2 and 3, every si 2 S is included in Pcand. &

RESULTS

Software implementation

We used MUMmer (Kurtz et al., 2004), an open source software

that implements a suffix-tree-based algorithm and provides several

options for comparing genomic sequences. The microarray DNA

probe design from candidate sequences was carried out using the

commercial software oligonucleotide modeling platform (OMP)

(available at http://www.dnasoftware.com), which implements a

state-of-the-art hybridization model (SantaLucia and Hicks,

2004). The BLASTN program from NCBI_BLAST (version

2.2.10) was used for aligning more than 2.0 million nucleotide

sequences stored in the ‘nt’ nucleotide database at the NCBI.

The database has grown significantly since we obtained the results

described in this paper and we have downloaded the latest version,

containing more than 3.6 million sequences, for future runs of TOFI.

The entire software pipeline was initially implemented on a

HPC environment at the Advanced Biomedical Computing Center

(http://www-fbsc.ncifcrf.gov/) using the High Throughput Com-

puting support from SGI� on an Altix cluster consisting of

64 · 1.5 GHz Itanium 2 processors running Red Hat� Linux

with 64 GB of shared memory. Once candidate sequences are

obtained, TOFI takes advantage of the parallel programming oppor-

tunities on HPC resources. The DNA probe design using OMP has

been parallelized using OpenMP by scheduling DNA probe design

for each candidate sequence on a separate processor. The execution

of BLASTN, by far the most computationally intensive part of

TOFI, is parallelized by assigning batches of DNA probes to sepa-

rate processors. In addition, several application-specific software

modules to process DNA sequences, to compile results of the inter-

mediate stages for analysis, and to process outputs of various stages

were implemented. This choice of resources and software is just

one way to implement TOFI’s integrated approach shown in

Figure 1. A different choice of software for suffix tree, DNA

probe design and sequence alignments could be used as well. How-

ever, our particular choice represents, arguably, some of the best

tools available for each of the three steps.

TOFI has since been ported onto one of the U.S. Department of

Defense Major Shared Resource Center’s Linux clusters, consisting

of 128 dual processor nodes on a distributed memory system, where

deployment of mpiBLAST (Darling et al., 2003) and execution of

OMP on separate processors is being tested. In the current cluster

implementation, we use mpiBLAST with 32 processors running in

parallel, which, again, consumes the bulk of the computing time.

The computational time of the algorithm depends on the number

of probes generated as the output of Step 2 and provided to mpi-

BLAST and on the size of the reference database. The number of

probes, in turn, depends on the length of the target genome, the

availability and similarity of a near-neighbor genome, and the

selected probe design constraints. The reference database is seg-

mented according to rules of thumb suggested by the mpiBLAST

developers (Darling et al., 2003), where the number of database

segments is set to the number of processors. Hence, the computa-

tional time of processing the reference database is directly depen-

dent on the speedup achieved by mpiBLAST (Darling et al., 2003).

The execution time could be improved by using other parallel ver-

sions of BLAST, such as pioBLAST (Lin et al., 2005).

Case study: DNA fingerprints for Y.pestis

TOFI was used to identify DNA fingerprints for the plague-causing

pathogen Y.pestis strain CO92 (accession no. NC_003143.1). Based

on the literature (Chain et al., 2004), a closely related organism,

Yersinia pseudotuberculosis strain IP 32953 (accession no.

NC_006155.1), was selected as the near-neighbor genome.

The empirical threshold T¼15 was selected based on a priori

analysis of hybridization properties for the selected microarray

technology and experimental setup, such as the probe length and

required melting-temperature. This parameter can be adjusted on a

case-by-case basis using feedback from additional experimental

evaluations. For T¼15 and maximum probe length Lmax ¼ 40,

according to step 3 in Table 2, the minimum length of exact matches

in MUMmer is M ¼ 26.

Approximately 96% of the Y.pestis genome was discarded using

MUMmer in the first step (Fig. 3). Thus the idea of using a near-

neighbor genome to identify and discard exact matches proved to be

extremely effective in this case. Out of about 4.6 million bases of

Y.pestis, fewer than 200 000 bases, distributed unevenly among

2222 candidate sequences, were considered further. In the next

step, slightly over 13 600 DNA probes satisfying the experimental

constraints were extracted from the candidate sequences.

In the BLAST probe specificity evaluation, the seed size w ¼ 7

was selected because it was the smallest value available in the

Fig. 3. Identification of Y.pestis DNA Fingerprints Using TOFI on a 32-CPU

Linux Cluster.
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BLAST version that we used, and a large E-value ¼ 100 reduced

the possibility of missing high scoring alignments.

Based on the specified TOFI parameters, all but 146 DNA probes

were rejected, defining the in silico DNA fingerprints that were

selected for experimental evaluation using custom DNA microar-

rays. These DNA fingerprints underwent further screening based

on additional experimental constraints, such as the presence of

restriction enzyme cleavage sites, leaving only 99 in silico finger-

prints for testing.

Experimental evaluation of in silico fingerprints

Ten customized DNA microarray chips, each containing several

replicates of the 99 in silico DNA fingerprints and a number of

control sequences, were fabricated and used for evaluation pur-

poses. Six chips were hybridized with the target genome Y.pestis
and four chips were used to test cross-hybridization with the near-

neighbor genome Y.pseudotuberculosis. Normalized data were used

to compare hybridization signals.

The microarray hybridization data were used to analyze the dis-

criminating power of the in silico fingerprints by comparing the

experimental hybridization results of the probes with Y.pestis and

Y.pseudotuberculosis. Figure 4 illustrates a sample set of data show-

ing the normalized response (y-axis) as a function of the DNA

fingerprints, which are arranged in descending order of the differ-

ence between their responses with Y.pestis and Y.pseudotuberculo-
sis. Variability in the hybridization responses in repeated

experiments is presented by standard error bars for each probe.

Out of the 99 DNA fingerprints tested, 20 (data not shown in

Fig. 4) produced higher average response for Y.pseudotuberculosis
than that for the target. This is due to computational and experi-

mental reasons. The computational reasons relate to limitations of

using BLAST for specificity evaluation, as discussed in Section 3,

step 3. A detailed post-experimental analysis of the BLAST outputs

indicates that 12 out of the 20 probes do not have reported align-

ments with Y.pseudotuberculosis in the significant hit list. For the

remaining eight probes, contiguous matches of 20 bases or more

were observed in the BLAST alignments but the calculated sum of

mismatches and gaps was larger than 15, causing these probes to be

identified as fingerprints. This type of problem could be avoided if

a threshold for the maximum number of contiguous matches could

be experimentally determined and used for additional filtering of

the probes that passed the first BLAST specificity testing. The

experimental reasons relate to the variability of probe responses.

Although all of the 20 probes have larger mean responses for

Y.pseudotuberculosis than that for Y.pestis, only six of these probes

have significantly larger responses. The experimental reason for the

observed aberrant hybridization of these six probes is not clear.

These 20 probes were excluded from further evaluation.

For a fingerprint to be useful in a diagnostic assay, it should yield

a very low response for non-targets and a high response for the

target. Thus, a few DNA fingerprints in Figure 4 that have a good

discriminatory power but have a relatively high response for non-

targets would not be considered useful on diagnostic assays. The

data used in Figure 4 can also be used to identify valid fingerprints

based on alternate rules, such as identifying quantifiable threshold

values for target and non-target responses. For example, 25 probes

could be selected by using a minimum threshold value of 2.0

for Y.pestis responses and a maximum threshold value of 1.0 for

Y.pseudotuberculosis responses, while 20 probes could be selected

using a minimum threshold of 2.0 for Y.pestis and allowing a maxi-

mum threshold of 0.5 for Y.pseudotuberculosis. In each case, a

sufficiently large number of probes would allow for detection

redundancy.

Other applications of TOFI

Having a near-neighbor genome is not a requirement for TOFI. The

near-neighbor genome is used to reduce the solution search space as

much as possible in the first step, which is computationally the least

expensive step. The target genome could be compared with any

small set of genomes using suffix trees. The higher the number of

matches identified in the first step is, the lower is the number of

computations required in the subsequent steps. In the current study,

a single near-neighbor comparison reduced the search space very

effectively. In the case in which a closely related near-neighbor for

the target is unknown, either arbitrary genome(s) could be used as

near-neighbor(s) or the first step could be omitted. In fact, TOFI was

successfully used to identify DNA fingerprints for plasmids pPCP1,

pCD1 and pMT1 in Y.pestis without using any near-neighbor.

Because plasmids are much shorter (about a few thousand bases)

than bacterial genomes (typically over a few million bases), the

whole plasmid could be considered as a single candidate sequence

and sent directly as input to the DNA probe design step.

TOFI was also used to identify fingerprints of Francisella
tularensis strain SCHU S4 (accession no. NC_006570.1). The

genomic sequence of the near-neighbor Francisella philomiragia
was not available and, therefore, the first step of TOFI was omitted.

In the second step, we used OMP to scan the whole F.tularensis
genome, consisting of about 1.9 million bases. Overlap of adjacent

probes was limited to 10 bases to reduce computation time. OMP

identified about 20 000 probes, which were tested for specificity

with T ¼ 15, resulting in 250 fingerprints. Further screening for

restriction enzyme cleavage sites reduced the number of in silico
fingerprints to 121.

Four chips were fabricated using several replicas of the 121

in silico fingerprints and a number of control probes. Two chips

were used to test hybridization with F.tularensis and the other two

to test cross-hybridization with F.philomiragia. We performed

Fig. 4. Comparison of Hybridization of in silico Fingerprints with Target

(Y.pestis) and Non-target (Y.pseudotuberculosis).
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initial evaluation using a criterion similar to the one employed for

Y.pestis. In contrast to the Y.pestis hybridization experiments,

only one probe had higher average response with F.philomiragia
than with F.tularensis. In the experiment, 85 probes showed a

normalized response with F.philomiragia smaller than 1.0, while

81 of those probes had responses larger than 2.0 with F.tularensis.
Currently, a large number of additional experiments, including a

standard panel of non-target genomes, are being performed to evalu-

ate the fingerprints of Y.pestis and F.tularensis before they are used

as probes in diagnostic assays.

Current limitations and plans for improvements

TOFI has already been used in its current configuration to identify

fingerprints for a number of pathogens. However, several algo-

rithmic and implementation issues affect its performance and are

being addressed.

The scope of DNA fingerprint identification in TOFI is currently

limited to a single target sequence. We are investigating approaches

to select fingerprints common to a large number of related targets,

which would allow for the identification of fingerprints common to

specific species or genus. For highly variable RNA viruses, unique

fingerprints may not exist. For this application, an approach based

on the selection of non-unique probes, which together may form

unique hybridization patterns on a chip for unambiguous viral

identification, is also being considered.

Although we have provided a definition of a DNA fingerprint and

an algorithm that guarantees all fingerprints satisfying it are iden-

tified, valid probes could potentially be discarded due to significant

overlap with adjacent probes during the probe design phase (Step 2

of TOFI). This relates to practical considerations in order to reduce

the number of ‘similar’ probes on the chip, allow space for multiple

replicates, and limit the total number of probes, considering that

several control sequences need to be present on the microarray.

Experimental evaluations of the identified in silico fingerprints for

Y.pestis and F.tularensis indicate the possibility for improvement

in the algorithm specificity. It was found that cross-hybridization

with non-target genomes was not detected by BLAST in about

10% of the in silico fingerprints for Y.pestis, while in an additional

10% of the fingerprints the cross-hybridization was underestimated.

Specificity will be improved in the future based on: (1) the selection

of optimal TOFI parameters using comprehensive evaluation of

the experimental results; (2) the post-processing of BLAST align-

ments using expert rules to better correlate alignments with hybrid-

ization and (3) the development of optimal alignment algorithms

that include hybridization thermodynamics as a post-processing

step after the BLAST specificity evaluation.

Due to the extremely rapid growth/modifications in available

DNA sequences, the continued validity of the DNA fingerprints

must be frequently verified. Efforts to automatically update finger-

prints are also planned.

CONCLUSIONS

This work presented TOFI, an integrated bioinformatics tool to

identify in silico genomic fingerprints for the design of microarray

diagnostic assays. TOFI is a standalone application that exploits the

parallel programming benefits provided by HPC platforms and

allows users to select input parameters through a graphical user

interface. This work differs from previous ones in that a formal

definition of a DNA fingerprint is provided. More importantly,

given the desired length of a fingerprint and its required number

of non-matching base pairs, we provide an algorithm that guaran-

tees that all in silico fingerprints are identified. Fingerprints for a

number of pathogenic sequences have been preliminarily evaluated

through experimental tests with pathogens of interest and non-target

genomes. Initial results indicate that the approach is capable of

identifying multiple fingerprints for specific DNA sequences, and

that the algorithm could be improved to enhance specificity. Further

testing, with a standard panel of non-target genomes, is underway.

This information will enable optimal TOFI parameter selection

and will serve as a valuable benchmark for future algorithm

improvements.
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